
Albert-Ludwigs-Universität, Institut für Informatik November 16, 2017
Prof. Dr. Fabian Kuhn
M. Ahmadi, P. Schneider, J. Uitto

Algorithm Theory - Winter Term 2017/2018

Exercise Sheet 3

Hand in by Thursday 10:15, November 30, 2017

Exercise 1: Dynamic Programming - MaxIS (5+5 Points)

Let G = (V,E) be a graph. A set of nodes I ⊆ V is called independent if for all u, v ∈ I it holds
that {u, v} 6∈ E. In other words, no two nodes in the independent set I are adjacent. A Maximum
Independent Set (MaxIS) is an independent set with maximum cardinality (number of nodes in I).

(a) Devise an efficient1 algorithm that uses the principle of dynamic programming and finds a maxi-
mum independent set in a rooted tree2.

(b) Prove that your algorithm is correct, i.e. returns a maximum independent set and prove that it
has the claimed runtime.

Exercise 2: Worst Case Analysis - Fibonacci Heaps (3+7 Points)

Fibonacci heaps are efficient in an amortized sense. However, the time to execute a single operation can
be quite large. Show that in the worst case, (a) the delete-min operation and (b) the decrease-key

operation can require time Ω(n) for an arbitrary n.

Hint: Describe a valid scenario where the delete-min or decrease-key operation respectively requires
at least linear time in n for an arbitrary n.

Exercise 3: Amortized Analysis - Counting (4+6 Points)

Consider non-negative integers in their canonical bit-representation. Similarly to the lecture, we
execute n increment operations (add 1) starting from 0. For the analysis, we add a little twist.
Flipping the ith bit bi

3 now has a cost 2i.

(a) Show that the amortized cost is super-constant (i.e. in ω(1)).

(b) Show that the amortized cost is O(log n).

Exercise 4: Amortized Analysis - Multisets (10 Points)

Let S be a multiset of integers (a set which allows duplicate values). We would like to change S as
follows. Either we insert a new element into S, or we delete the d|S|/2e largest elements from S (in case
of removing some but not all the duplicates of the same element, we break the tie arbitrarily). Design
a data structure that supports two operations Insert(S, x) and DeleteLargerHalf(S) such that any
sequence of m operations starting from an empty multiset takes O(m) time. Prove the correctness
and amortized runtime of your implementation of Insert(S, x) and DeleteLargerHalf(S).

Hint: There is an algorithm to find the median of a multiset of n integers in O(n) time. You can use
it as a blackbox.

1An algorithm is efficient if it has a runtime of O
(
p(n)

)
, where p(n) is a polynomial.

2The input graph is connected, has no cycles, has a dedicated root node, and each node knows its parent and children.
3Bit bi is the bit in the ith position ascending from the least significant bit.

1

